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Abstract- In present paper authors represented a simple model to study the effect of non-homogeneity on vibration of 

parallelogram plate with bi-linear thickness variation. Thermal induced vibration of these plates has been assumed as bi-

linear temperature circulation. For non-homogeneity of the plate material density is taken to be linearly varying. The 

governing differential equation has been solved with the help of variables separation method. The approximated 

frequency equation is derived by using Rayleigh-Ritz method by two term deflection function. The frequency values for 

the first two modes of vibration have been calculated for a simply supported parallelogram plate for various values of 

aspect ratio, thermal gradient, skew angle and taper constants.  

 

Index Terms-Vibration, linear thickness, orthotropic, non-homogeneity, parallelogram plate, thermal gradient. 

 

 

1. INTRODUCTION 

In the engineering, the entire machines and engineering 

structures experiences vibrations so we cannot move 

further without taking into consideration the effect of 

vibration. The requirement to know the effect of 

temperature on visco-elastic plates of variable thickness 

has become crucial with the development of technology. 

Tapered Plates with uniform and non-uniform thickness 

and temperature are widely used in automobile sector, 

aeronautical field, power plants and marine structure etc. 

Various researchers analyzed the vibration of different 

plates homogeneous or non-homogeneous having variable 

thickness and taking into account or not the temperature 

effect. 

An extensive review on linear vibration of plates has been 

given by Leissa [1] in his monograph and a series of 

review articles [2] .Tomar and Gupta [3] considered the 

effect of taper gradient in two dimensions on elastic 

plates, but not on visco-elastic plates. Tomar and Gupta 

[4] studied temperature effect on frequency of an 

rectangular orthotropic plate with variable thickness in 

one direction. Gupta and Khanna [5] analyzed vibration  

 

of a visco-elastic rectangular plate under the effect of 

linearly varying thickness in both directions. Gupta 

,Kumar and Gupta [6] studied the effect of parabolic 

thickness variations on vibration of visco-elastic 

orthotropic parallelogram plate. Bhatnagar and Gupta [7] 

analyzed Vibration analysis of visco-elastic circular plate 

subjected to thermal gradient. Khanna and Sharma [8]  

studied the vibration of visco-elastic square plate with 

variable thickness and thermal gradient. Gupta and Kumar 

[9] studied thermal effect on vibration of parallelogram 

plate of bi-direction linearly varying thickness. Singh and 

Saxena, [10] studied transverse vibration of rectangular 

plate with bi-dimensional thickness variation. Khanna 

[11] analyzed a computational calculation of vibrations of 

square plate by variable thickness with thermal effect in 

both direction. 

 Sobotka [12] represented free vibration of visco-elastic 

orthotropic rectangular plates. Sharma and Sharma [13] 

presented the mathematical study on vibration of visco-

elastic parallelogram plate. Khanna, Arora and Kaur [14] 

considered the vibrations of visco-elastic non-

homogeneous plate with variable thickness and density. 

In present paper, the authors have analyzed the bi-linear 

temperature deviation effect on the vibrations of non-

homogeneous parallelogram plates with inconsistent 

linear thickness in two dimensions. Also, it is supposed 

that the plate is simply supported (SSSS). Due to 

temperature deviation, we suppose that non homogeneity 

occurs in modulus of elasticity. Frequency for the first 

and second mode of vibration is obtained for various 

numerical values of tapering constant, non-homogeneity, 

thermal gradient and aspect ratio. Results are presented in 

form of graphs and tables. 

 

2. ANALYSIS OF THE MODEL AND SOLUTION   

 

2.1 Material 

 The parallelogram plate R with skew angle θ and sides 

a,b be shown in figure 1. Since it is a special case of 

rectangular plate, we take θ = 0
o
. The plate is taken to be 

orthotropic and non-uniform. Here 
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Figure 1.( The parallelogram plate R) 

 

Displacement  for free vibration of the 

parallelogram plate is given by 

 

                                   (2) 

 

Here  is the maximum displacement at time t 

and T(t) is the time function. 

The plate considered here is subjected to linear 

temperature distribution  along - and - directions, 

 then 

                           (3) 

 

 

where ‘a’ represents length,  ‘ b’ represents breadth and τ0 

is temperature at origin of the plate. 

For orthotropic material, the temperature dependent 

modulus of elasticity is taken as  

 

      , 

     , 

                                  (4) 

 

where  and are Young’s moduli in  - and - 

directions respectively,  is shear modulus 

and  is taken as slope variation of moduli with 

temperature. Using eqn. (3) in eqn. (4) one has 

 

  

 

         (5) 

  

  is a thermal 

gradient. 

The plate’s thickness variation for the present study is to 

be assumed linearly in - and - directions which is 

represented by  

 

                        (6) 

 

Here β1 and β2  are known as tapering constants in - and 

- directions respectively and  

      at  

The flexural rigidities ( ) and torsional rigidity 

(  ) of the plate are taken as  

 

 

 
 

                                                   (7) 

Where  are Poisson’s ratio. 

Using eqns. (5) and (6) in eqn. (7), we have  

 

 

   

                                                                            (8) 

For non-homogeneous material, linear variation taken in 

density is 

 

                                          (9) 

 

Where c1 ( ) is non-homogeneity constant. 

 

2.2 Frequency equation and boundary condition 

 

Boundary conditions  for a non-homogeneous orthotropic 

(SSSS) parallelogram plate  

 are taken as 
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                 (10) 

Two-term deflection function, satisfying the boundary 

conditions, can be taken as   

                      

  

      

               (11)    

             

 where A1, A2  are constants to satisfy boundary 

conditions. 

Now, unit less variables having no dimension are using 

for our convince as 

                                                           

                            (12) 

 

                                          (13) 

 

Components of ,  ,  and  are , 

secθ,  and  respectively in - and - 

directions. 

The expressions for strain energy (VE) and kinetic energy 

(TE) are taken as 

 

       

 (14)  

and 

 

       (15) 

2.2 Solution by Rayleigh-Ritz Method 

 

Rayleigh – Ritz method is used to find an appropriate 

vibrational frequency. This method works on the 

phenomena that the maximum strain energy (VE) must 

equal to maximum kinetic energy (TE).  An equation in the 

following form is obtained as 

 

                                              (16) 

     

Using eqns. (8), (12), (13) in eqn. (14) and (15), then 

substituting the values of VE and TE in 

Eqn. (16), we obtained 

 

                       

       0                                              (17)                                                                                             

 

Here, 

 

  

                                                                                          

                                                                                     (19)  

                                                                                            

  

 

Now, the value of A1 & A2 is to be determined from (17) 

as 

 

             ,for s = 1, 2                         (20)  

                                                             

On solving equation (20), we have  

 

      ms1A1 + ms2A2 = 0, for s = 1, 2                              (21)   

                                                
 

Here ms1, ms2 (s = 1,2) comprises parametric constant and 

the frequency parameter.  

The determinant of the co-efficient of equation (21) must 

be zero, for non-trivial solution,   

 we  get the equation of frequency as follows 

 

                                                (22) 

                                                         

With the help of equation (22), we get quadratic equation 

in λ
2
. We can obtain

 
two roots of  λ

2  
from this equation. 

These roots give the first (λ1) and second (λ2) modes of 

vibration of frequency for various parameters of tapering 
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constants, thermal gradient and aspect ratio for a simply 

supported plate.  

 

3. RESULT AND DISCUSSION 

The frequency (λ) for 1
st
 and 2

nd
 mode of vibration of an 

orthotropic (simply supported) parallelogram plate has 

been calculated for various values of thermal constant (α), 

tapering constant (β1 and β2), aspect ratio (a/b) and non-

homogeneity constant (c1). All the results are obtained by 

using  MATLAB / MAPPLE software. Following 

parameters are used for these calculations [6]: 

The results are given in tables [1-5]. 

 

Table-1 represents thermal gradient (α) versus frequency 

(λ) with fixed value of aspect ratio (a/b = 1) and different 

values of taper constants and non-homogeneity constant 

(β1 = β2 = c1 = 0,  

0.4, 0.8). It is evident from Table-1 that as value of 

thermal gradient (α) increases from 0 to 0.8 corresponding 

frequency value (λ) for 1
st
 and 2

nd
 mode of vibration 

decreases. 

 

Table-2 represents taper constant (β1) versus Frequency 

(λ) with fixed value of aspect ratio (a/b = 1) and different 

values of thermal gradient, tapering constant and non-

homogeneity (α = β2 = c1 = 0, 0.4, 0.8). From Table-2 it is 

clear that as value of tapering constant (β1) varies from 0 

to 0.8 corresponding frequency value (λ) also increases 

for 1
st
 and 2

nd
 mode of vibration. 

 

Table-3 represents taper constant (β2) versus Frequency 

(λ) with fixed value of aspect ratio (a/b = 1) and three 

different values of thermal gradient, tapering constants 

and non-homogeneity (α = β1 = c1 = 0, 0.4, 0.8). From 

Table-3 it is clear that as the value of tapering constant 

(β2) varies from 0 to 0.8 Corresponding value of 

frequency (λ) also increases for 1
st
 and 2

nd
 mode of 

vibration. 

 

Table-4 represents non-homogeneity constant (c1) versus 

frequency (λ) with fixed value of aspect ratio (a/b = 1) 

and different values of tapering constants and thermal 

constant (β1 = β2 = α = 0, 0.4, 0.8). It is evident from 

Table-4 that as value of non-homogeneity constant (c1) 

varies from 0 to 0.8 corresponding value of frequency (λ) 

also increases for 1
st
 and 2

nd
 mode 

 of vibration. 

 

Table-5 represents aspect ratio (a/b) versus frequency (λ) 

with various values of tapering constants, thermal 

constant and non-homogeneity (β1 = β2 = α = c1 = 0, 0.4, 

0.8). It is evident from Table-5 that as the value of aspect 

ratio increases from 0 to 1 corresponding value of 

frequency (λ) for  1
st
 and 2

nd
 mode of vibration decreases.
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Table-1. Thermal Gradient (α) vs Frequency (λ) 

 

 

 

Table-2. Taper Constant (β1) vs Frequency(λ) 

 

 

 

Table-3. Taper Constant (β2) vs Frequency (λ) 

 

Table-4. Non-homogeneity constant (c1) vs Frequency (λ) 

α β1 = β2 = C1=0, θ = 30
0 

β1 = β2 = C1=0.4, θ = 45
0
 β1 = β2 = C1=0.8, θ = 60

0
 

1 2 1 2 1 2 

0.0 6.61 36.04 8.68 50.90 9.99 68.83 

0.2 6.45 34.93 8.52 50.58 9.84 68.64 

0.4 6.27 33.78 8.36 50.28 9.69 68.43 

0.6 6.11 32.61 8.19 49.98 9.52 68.23 

0.8 5.93 31.36 8.01 49.67 9.33 68.04 

β1 α = β2 = C1=0, θ = 30
0 

α  = β2 = C1=0.4, θ = 45
0
 α  = β2 = C1=0.8, θ = 60

0
 

1 2 1 2 1 2 

0.0 6.61 36.04 6.73 36.10 6.97 38.63 

0.2 7.32 40.45 7.52 42.64 7.83 46.81 

0.4 8.09 46.14 8.37 50.29 8.54 55.73 

0.6 8.89 52.71 9.22 58.66 9.47 64.12 

0.8 9.67 59.85 10.05 67.51 10.63 74.83 

β2 α = β1 = C1=0, θ = 30
0 

α  = β1 = C1=0.4, θ = 45
0
 α  = β1 = C1=0.8, θ = 60

0
 

1 2 1 2 1 2 

0.0 6.61 36.04 6.97 39.61 6.67 41.97 

0.2 7.28 39.78 7.66 44.84 7.32 48.49 

0.4 7.96 43.75 8.37 50.29 7.98 55.16 

0.6 8.65 47.90 9.08 55.90 8.66 61.95 

0.8 9.36 52.16 9.81 61.61 9.34 68.83 
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Table-5. Aspect ratio (a/b) vs Frequency (λ) 

 

 

4. COMPARISON & CONCLUSION 

 

Authors compared the frequency values of present paper (non-homogeneous and SSSS plate) with [13] (homogeneous 

and CCCC plate) at c1= 0 (non-homogeneity constant). Authors observed that the frequency values are less in present 

paper than [13] for same parameters. Comparison tables (Table-6 and Table-6) are given below:  

 

Table-6. Skew angle (θ) vs Frequency (λ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table-7. Thermal Gradient (α) vs Frequency (λ) 

 

C1 α = β1 =  β2=0, θ = 30
0 

α  = β1 =  β2=0.4, θ = 45
0
 α  = β1 =  β2=0.8, θ = 60

0
 

1 2 1 2 1 2 

0.0 6.61 36.04 7.47 44.70 12.44 91.46 

0.2 6.96 37.99 7.88 47.25 13.13 96.86 

0.4 7.39 40.30 8.37 50.29 13.95 103.34 

0.6 7.90 43.08 8.96 54.01 14.95 111.32 

0.8 8.53 46.53 9.69 58.68 16.21 121.51 

      

a/b 

α = β1=β2= C1=0, θ = 30
0 

α =β1=β2=C1=0.4, θ=45
0
 α =β1=β2=C1=0.8, θ=60

0
 

1 2 1 2 1 2 

0.2 128.43 1018.60 153.14 1352.62 275.53 3057.90 

0.4 34.04 250.88 41.21 335.62 75.11 766.60 

0.6 16.32 108.74 20.07 146.88 37.12 340.44 

0.8 9.87 59.02 12.31 80.79 23.16 190.83 

1.0 6.61 36.04 8.36 50.29 16.21 121.51 

            

θ 

    a/b = 1, β1 = β2= 0, C1 = 0,  α  = 0
 

  a/b = 1, β1= β2= 0.4, C1 = 0, α  = 0.4 

1 2 1 2 

       0
o 

7.83 

(34.01) 

43.53 

(139.01) 

11.03 

(40.01) 

66.73 

(160.99) 

     30
o 

6.60 

(48.99) 

36.04 

(192.93) 

9.33 

(56.77) 

56.77 

(222.93) 

     45
o 

5.24 

(78.11) 

28.04 

(301.01 ) 

7.70 

(90.03) 

44.70 

(346.02) 
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Here, values of [13] are given in brackets. In Table-6 it is evident that as skew angle increases frequency for both modes 

increases for [13] but decreases for present paper. The present paper describes the behavior of frequencies for 1
st
 and 2

nd
 

mode of vibration corresponding to the thermal gradient, tapering constants, aspect ratio and non-homogeneity of the 

material. The objective of the study is to deliver certain substantial data for frequency modes. The frequency can be 

optimize by taking suitable variation in parameters. Therefore engineers are advised to analyze the results of present 

problem and develop the plate’s structure in such a way to facilitate the basic requirements. 
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α 

a/b = 1, β1 = β2= 0.4, C1 = 0, θ = 0
o 

a/b = 1, β1= β2= 0.4, C1 = 0, θ = 60
o
 

1 2 1 2 

     0.0 11.52 

(40.58) 

67.45 

(160.98) 

5.39 

(213.89) 

31.02 

(804.12) 

     0.2 11.28 

(38.68) 

67.28 

(154.26) 

5.31 

(204.62) 

30.83 

(769.99) 

     0.4 11.03 

(36.92) 

66.73 

(146.86) 

5.23 

(194.92) 

30.67 

(732.62) 

     0.6 10.77 

(34.89) 

66.36 

(139.87) 

5.14 

(184.64) 

30.50 

(692.95) 

     0.8 10.55 

(32.78) 

66.01 

(131.75) 

5.04 

(173.86) 

30.32 

(652.88) 


